$3/4 + r(1/s_a + 1/s_b + 1/s_c) \le s^2/(12r^2)$ https://www.linkedin.com/groups/8313943/8313943-6374933314083528705 A triangle has perimeter 2*s*, inradius *r* and the distances from its incentr to vertices are s_a, s_b, s_c . Prove that $3/4 + r(1/s_a + 1/s_b + 1/s_c) \le s^2/(12r^2)$.

Solution by Arkady Alt, San Jose, California, USA. Noting that $\frac{r}{s_a} = \sin \frac{A}{2}$, $\frac{r}{s_b} = \sin \frac{B}{2}$, $\frac{r}{s_c} = \sin \frac{C}{2}$ we obtain $3/4 + r(1/s_a + 1/s_b + 1/s_c) \le 3/4 + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$. Since* $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \le \frac{3}{2}$ and** $3\sqrt{3}r \le s \Leftrightarrow \frac{9}{4} \le \frac{s^2}{12r^2}$ we have $3/4 + r(1/s_a + 1/s_b + 1/s_c) \le 3/4 + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \le \frac{3}{4} + \frac{3}{2} = \frac{9}{4} \le \frac{s^2}{12r^2}$. * $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} \le 3 \sin \frac{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}{3} = 3 \sin \frac{\pi}{6} = \frac{3}{2}$ (Jensen's Inequality for sinx because it is concave down on $[0,\pi]$). Or, since $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = \cos \alpha + \cos \beta + \cos \gamma$, where $\alpha := \frac{\pi - A}{2}$, $\beta := \frac{\pi - B}{2}$, $\gamma := \frac{\pi - C}{2}$ and $\alpha, \beta, \gamma > 0$, $\alpha + \beta + \gamma = \pi$ then $\cos \alpha + \cos \beta + \cos \gamma = 1 + \frac{r_1}{R_1} \le \frac{3}{2}$ (because α, β, γ can be considered as angles of some triangle with inradius r_1 and circumradius R_1 . And also we have $2r_1 \le R_1$ (Euler's Inequality)); $\gamma := \frac{\pi - C}{2}$. Since $\alpha, \beta, \gamma > 0$ and $\alpha + \beta + \gamma = \pi$ then ** By AM-GM Inequality

$$r^{2}s = (s-a)(s-b)(s-c) \leq \left(\frac{s-a+s-b+s-c}{3}\right)^{3} = \frac{s^{3}}{27} \Leftrightarrow 3\sqrt{3} r \leq s.$$